
NOVEL APPROACHES TO CONTENT MODERATION OF END-TO-END
ENCRYPTED IMAGES USING PERCEPTUAL HASHES
Mantha Akshara1, Peng Ruijia1, Tan Si Ying1, Ruth Ng Ii-Yung2, Chan Ming Kai Alvin2

1 Raffles Institution, 1 Raffles Institution Lane, Singapore 575954
2 DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract
In this paper, we address the issue of content moderation of harmful images in applications with
end-to-end encryption (E2EE). In E2EE, the image is encrypted before transmission on the
server such that the server cannot read the original image, preserving user privacy. Perceptual
image hashing is a type of hash which returns analogous results when similar images are hashed.
We explore three approaches to privacy-preserving content moderation in E2EE image
communication using perceptual hashes – using hashes individually, taking the majority result of
all the hashes, and using a decision tree. The decision tree approach demonstrates promising
results with a 95% accuracy rate, the highest of all the content moderation methods we explored,
showing the robustness of our approach. We tested the decision tree over a variety of hashed
images of people to demonstrate the feasibility of our approach to be used in various real-world
applications, and created an accompanying library.

1. Introduction
With the advent of the Internet, the problem of content moderation has become increasingly
important. Content moderation is necessary to prevent the spread of harmful, inappropriate, or
illegal material, ranging from sensitive company records to copyrighted images to offensive or
inappropriate content such as R21 material, that is, mature material strictly for viewing by adults
21 and above. Applications of content moderation in real-world scenarios include companies
preventing employees from sharing sensitive company information via email, and ensuring that
copyrighted images are not distributed unlawfully. However, the massive amount of media online
makes manual verification of individual pieces of media by human monitors infeasible,
necessitating automation in content moderation.

We explore content moderation in the setting of end-to-end encrypted (E2EE) communication of
images. This involves users sending content over a server. In E2EE communication, only users
involved in the communication have access to the content sent, and the content should be kept
private from the server, as illustrated in Figure 1. An example of E2EE image communication is
sending images over WhatsApp. This complicates the content moderation process as the server
cannot directly access images shared by users and scan them for problematic content. Relying
solely on user reports to flag problematic images is also insufficient as it leaves room for abuse
between two consensual parties, and does not prevent harm to the user upon initial exposure to
the image, especially for disturbing images such as Child Sexual Abuse Material (CSAM). Given
these challenges, it is imperative to find a privacy-preserving method to automate content
moderation. This may involve a client-side check on the original image or a server-side check on



a privacy-preserving representation of the image. Should the image be reported to be visually
similar to undesirable content, further content moderation actions such as sending the original
image to human moderators can be carried out on the grounds that the image has a high
probability of going against the Terms of Service of the communication platform.

Figure 1: Overview of E2EE communication process

The approach we use in this paper is perceptual image hashing, a lightweight and fast method
commonly used in detecting similar images in image forensics. Perceptual hash algorithms take
an image as input and output a fixed-length hash as output. In E2EE image communication, the
perceptual hash algorithms are run client-side on the image to produce perceptual hashes, which
are sent to the server along with the encrypted image contents. The server then decides whether
to forward the encrypted image to the receiver based on the hashes received. The image cannot
be reconstructed from its hash, preserving the privacy of the image, even when the server is
given access to its perceptual hash to be compared against a database of perceptual hashes of
known bad images for content moderation purposes. Unlike cryptographic hashes which produce
a vastly different hash should one bit of the input be modified, perceptual hashes are able to
detect visually similar images by considering the global features of the image in the construction
of the hash. For example, a desaturated variant of an R21 image would be considered similar to
its original, allowing for detection and content moderation of such modified R21 images. This
often involves preprocessing the image via downscaling and changing its colour space to reduce
detail. Hence, a key metric in measuring the performance of a perceptual hash algorithm would
be its robustness in its ability to classify two visually similar images as similar, and vice versa.

1.1 Contributions
In this paper, we:

● analyse the pros and cons of each perceptual hash algorithm



● explore perceptual hash algorithm application approaches, using combinations of four
different perceptual hash algorithms

● run experiments quantifying the effectiveness of our approaches
● produce an accompanying library utilising these approaches

We have formulated three different approaches that utilise the properties of these perceptual
hashes in a real-life content moderation system of E2EE image communications.

1. Individual Hash – The verdict for whether an image is visually similar to an R21 image in
the dataset was determined solely from a single hash algorithm.

2. Majority Decision – The results from all four hash algorithms were considered in
determining whether the image is visually similar to an R21 image in the dataset, and the
final verdict was the verdict of the majority of the hash algorithms. In the case of a tie,
the verdict of the best-performing hash from Approach 1 was taken.

3. Decision Tree – The results for a combination of all four hash algorithms were passed
through a decision tree, which would produce a final verdict.

With approach 1 and 2 as benchmarks, our decision tree approach has produced promising
results for improving the robustness of comparing visually similar images, as elaborated upon
under Section 4.3.

2. Background
Our work builds upon Sharma [1] which analyses the performance of perceptual hashes, which is
why we chose to focus on difference hash (dHash), perceptual hash (pHash), wavelet hash
(wHash) and non-negative matrix factorisation hash (NMFHash). However, a hash using
Singular Value Decomposition (SVD) was discarded due to poor performance in our initial tests
and [3].

Difference hash (dHash) uses the difference between the intensity values of adjacent pixels to
compute the final hash. Perceptual hash (pHash) generates a hash by applying a discrete cosine
transform (DCT) to an image to separate it into frequency and scalar domains, reducing the
image detail by extracting the low-frequency components, and then converting the processed
image to a hash. Wavelet hash (wHash) works like pHash but uses discrete wavelet transform
(DWT) instead. Lastly, NMFHash generates the hash by first dividing the image into circular
rings, which are then straightened and used to create a secondary image. The hash is then found
by performing non-negative matrix factorisation (NMF) on the secondary image. A more
comprehensive overview of the four hashes is available in Appendix 1.

Previous literature reviewing the performance of perceptual hashes [1][2][3] has determined that,
individually, their performance in real-world situations may not be optimal. Furthermore,
different content-preserving modifications such as colour correction and rotation may be applied
to an image to generate a visually similar variant, both by malicious users attempting to bypass
automated content moderation checks and non-malicious users for aesthetic or practical
purposes. Different hash algorithms are robust against different content-preserving
modifications, and there is no hash that performs the best in detecting all modifications. Hence, a



combination of perceptual hashes may result in greater robustness in detecting visually similar
images for content moderation. In this paper, we explore and make recommendations on the
approaches utilising perceptual hashes as mentioned in Section 1.1, whether individually or
combined, to improve the robustness of these hashes in detecting visually similar images.

3. Methodology
We empirically tested the robustness of our three novel approaches on two self-curated image
datasets, adapting methodology from previous literature.

3.1 Datasets
We tested our approaches on two datasets, Magazines and People, to quantify their effectiveness.
In our context, we define undesirable content to be the transmission of R21 images in E2EE
image communications. Hence, each dataset consists of “R21” images, mature material strictly
for viewing by adults 21 and above, which are the images to be compared against; “PG” images,
images that are suitable for viewing by all ages, which should not be considered visually similar
to the R21 images; “modified” images which should. The modified images were generated by
applying different content-preserving modifications to the R21 images. Such modifications
include colour changes such as saturation and brightness, and geometrical changes such as crop
and rotation. Refer to Appendix 2 for the breakdown of the specific modifications.

The Magazines dataset consists of 300 R21 images (adult magazine covers), 5605 modified
images and 5250 PG images (fashion magazine covers). The People dataset consists of 249 R21
images (more general than magazine covers), 4731 modified images, and 5269 PG images. Refer
to Appendix 3 for more details.

3.2 Hash algorithms
We used four perceptual hashing methods for our experiment. Three of them (pHash, dHash and
wHash) used the implementations in the ImageHash Python library [4], while we implemented
NMFHash [5] in Python. Additional details can be found under Section 2.

Experiments quantifying the robustness of individual hashes against different content-preserving
modifications have been conducted in previous literature [1][2][3]. We have employed similar
metrics and modifications in our tests, which returned corroborating results.

3.2.1 Image Pre-processing
Perceptual hashes often conduct pre-processing to reduce image detail so that similar images are
more likely to be considered visually similar. This often involves normalisation to a smaller
image size, and a simplified colour space. For dHash, pHash and wHash, the image was
normalised to 17 x 16 (dHash) and 64 x 64 (pHash, wHash) and changed to grayscale. For
NMFHash, the image was normalised to 512 x 512 and changed to YCbCr colour space.



3.2.2 Hash Similarity
We utilise standardised metrics for comparing the similarity of two hashes to determine whether
images are visually similar. A threshold value is used to determine the bounds of similarity after
which an image is classified as different. Images with low similarity are considered as visually
dissimilar images, while images with high similarity are considered as visually similar images.

For pHash, dHash and wHash, Hamming distance, which measures the number of differing bits
between two hashes, was used to compute the similarity between two images. A Hamming
distance of 0 indicates that the images are identical, while a distance of 1 suggests the images are
completely different. Hence, a smaller Hamming distance implies a higher similarity.

For NMFhash, the Pearson correlation coefficient was used to compute the similarity between
two images. The range of the Pearson correlation coefficient is between -1 and 1, where a value
of 1 indicates that the images are identical, while a value of -1 implies the images are completely
different. Hence, a greater Pearson correlation coefficient value implies a higher similarity.

3.3 Data Processing
Our dataset consists of three types of images as mentioned in 3.1: R21 images, modified images,
and PG images. Refer to section 3.1 for the definitions of these images.

First, we hashed all images in our dataset using the four perceptual hash algorithms described in
Section 2, producing four hashes per image. Next, we calculated similarity scores as follows:

1. For each modified and PG image, its hash was compared to the corresponding hash of all
R21 images, where both hashes were produced using the same hashing algorithm.

2. The highest similarity value (lowest Hamming distance for dHash, pHash, and wHash,
and the highest Pearson correlation coefficient for NMFHash) across all R21 image hash
comparisons was recorded as the similarity score for that image. The hashes of the
modified images should have a high similarity score when compared to the hashes of the
R21 images as they are visually similar, while the hashes of the PG images should not.

3. This process was repeated for all four hash algorithms.

3.4 Evaluation Metrics
To compare the different approaches, we made use of some metrics to evaluate their
performance. For reference, positives refer to the modified images, while negatives refer to the
PG images.

● Accuracy measures the overall effectiveness of the approach by considering both positive
and negative predictions.

● Precision measures how many predicted positives are actually positive.
● Recall measures how many of the actual positives or negatives were correctly predicted

as positive by the approach.
● F1 Score provides a balanced view of precision and recall.

For the formulae we used to evaluate these metrics, refer to Appendix 4.



4. Results and Discussion

4.1 Results
Below, we present the data of the various approaches collected from our experiments.
4.1.1 Performance of various approaches in detecting visually similar images

Hash Algorithm Threshold Condition Accuracy Precision Recall F1-Score

dHash ≤ 0.334 89.18 100.00 78.22 87.78

pHash ≤ 0.340 88.81 100.00 77.48 87.31

wHash ≤ 0.191 88.76 99.18 78.04 87.34

NMFHash > 0.952 75.45 97.73 51.81 67.72
Table 1. Thresholds for magazines dataset and comparison of hash algorithms using performance evaluation metrics. All values
are in percentages (%).

Accuracy Precision Recall F1-Score

89.18 100.00 78.22 87.78
Table 2. Analysis of Majority Decision Approach performance using evaluation metrics. All values are in percentages (%).

Accuracy Precision Recall F1-Score

95.12 99.80 90.36 94.84
Table 3. Analysis of Decision Tree performance using evaluation metrics. All values are in percentages (%).

Accuracy (%) Precision Recall F1-Score

91.94 92.07 90.78 91.42
Table 4. Decision Tree Performance on People Dataset



Figure 2. dHash performance for desaturation and rotation content modifications

Figure 3. NMF hash performance for reflection and saturation content modifications

4.1.2 Time and Memory
dHash, pHash and wHash all take relatively similar time taken to hash images, whereas
NMFHash is significantly slower, likely because its algorithm normalises the image to 512 x 512
before processing while the others normalise to 16 x 16. Interestingly, when compared to
SHA256, a cryptographic hash, dHash performed slightly faster. In terms of memory, dHash
consumes the most memory, followed by NMFHash, then pHash and SHA256 which have
similar memory usage. wHash uses the least memory. The performance of individual hashes
should be considered in the choice of hashes for any approach depending on the use case. For
example, users may want to exclude NMFHash in an application where bulk image transfers are
expected due to its slow speed. Refer to Appendix 5 for the data of the hashes’ time and memory
consumption.

4.2 The Flaws of Majority Decision
The ImageHash hashes’ strong ability to detect colour-changing modifications (Figure 2) is
reflected in the high accuracy, precision and recall across the three hashes, with dHash
performing the best (Table 1). Conversely, NMFHash performs well in handling geometrical
modifications such as reflections due to its construction of a secondary image from ring
partitions of the primary image. However, it struggles with most other image alterations, such as
saturation (Figure 3). Refer to Appendix 6 for a full set of graphs of every hashes’ performance
against various modifications.

The above observations reflect the ability of different hash algorithms to complement one
another in detecting a wide variety of content-preserving modifications. They suggest the great
potential of different hash algorithms in working together to improve the accuracy of detecting
visually similar images. A naive approach to doing so is the Majority Decision approach.

In the Majority Decision approach, the input image was evaluated based on every hash type, with
a separate verdict for each. The final verdict was decided based on the majority verdict of the
four hashes. In the case of a tie, the dHash verdict was used to tiebreak, as it produced the most



reliable results for an individual hash (Table 1). Table 2 shows the results and performance of
this approach.

The performance of this approach was very similar to that of dHash, the best performing
individual hashing algorithm, when tested on the same Magazines dataset. This is likely because
three out of the four hash algorithms used (dHash, pHash, wHash) perform similarly and are
effective in identifying the same types of image modifications, such as noise and colour changes
(Figure 2), and this is enough to constitute a majority in this approach. While NMFHash
performs well against geometric modifications like reflection (Figure 3), its different result alone
is insufficient to alter the final verdict. Additionally, since dHash was used as the tiebreak
algorithm, its outcome likely weighs more in the final verdict overall. Hence, this approach was
able to perform just as well as the best performing individual hash algorithm, but was unable to
further improve on accuracy and F1 score beyond that.

4.3 Advantage of Decision Tree
We elaborate on the construction of the decision tree in Approach 3 as mentioned in Section 1.1.
Given the ability of machine learning as a powerful tool to process large amounts of data, we
passed the data of the similarity scores of all modified and PG images generated by all four hash
algorithms into a Decision Tree Classifier. The decision tree takes the four hash similarity scores
as input, processes them with unique thresholds at each node, and outputs a verdict regarding
whether the image is visually similar to an R21 image in the dataset. The Magazines dataset was
split randomly into training and testing sets, such that 80% of the data was used for training the
machine learning model, while 20% was used for testing the model’s predictions. The same 20%
of data was used in testing all three approaches from Section 1.1, producing the results in Section
4.1. The depth of the tree was limited to 3 to avoid overfitting of data, as increasing the depth
further had no significant positive impact on the results.

Figure 3 shows the nodes of our decision tree as well as the threshold condition for splitting at
each node, while Table 3 shows the performance of the decision tree classifier.



Figure 3. Decision Tree Visualisation

While the Majority Decision approach fails to play to the strengths of each hash algorithm
sufficiently, the decision tree is able to improve the overall accuracy of detecting visually similar
images, with thresholds determined by analysing complex trends in the similarity score data
outputted by each hash algorithm using machine learning. It performs the best overall out of the
three perceptual hash application approaches, especially regarding accuracy and F1 Score (Table
3). It is also able to achieve significantly lower false negative rates than both the majority
decision approach and any individual hash. This improvement in false negative rates is especially
important in the context of E2EE content moderation, as any undetected harmful content allows
for further dissemination in the absence of human moderators due to the privacy-preserving
nature of E2EE communications.

4.4 Generalisability of Decision Tree Approach
We also tested our threshold conditions in all three approaches on the People dataset, a different
set of images from Magazines as mentioned in section 3.1. All the threshold conditions used
were the same as those obtained from the Magazines dataset, and were not recalibrated to fit this
new dataset. The decision tree is also static, and was not retrained on the People dataset. The
results for the decision tree approach are presented in Table 4. For results of the other two
approaches, refer to Appendix 7.

The decision tree still performs quite well, with generally high accuracy and F1 Score, even on a
completely different dataset. The accuracy of 91% is still higher than that of the other two
approaches, even for the Magazines dataset from which the relevant thresholds were determined.
Thus, the decision tree approach is highly generalisable to R21 content, and it is not only specific
to the one type of image (magazines) that it was trained on. We believe the approach can also be
extended to detecting visually similar image hashes to datasets of perceptual hashes of other
kinds of images, such as copyrighted images or deep fake images of political figures.



4.5 Library Implementation
We have implemented a Python library that implements the different approaches to utilising the
four hashes. It can be accessed at https://pypi.org/project/unihasher/ and includes both library
usage code and a Proof-of-Concept Socket application. Details on the hash algorithm
implementations used can be found under Section 3.2.

5. Conclusion
From our experimental results, it can be concluded that the decision tree approach allows for
identification of a wider range of image modifications as visually similar to the original images,
compared to simply implementing individual hash algorithms or the naive approach of Majority
Decision. This is observed from the decreased rates of false negatives, as different hash
algorithms perform better on specific image modifications. Hence, the approach of using
decision trees to combine and improve on the performance of different perceptual hashes
algorithms is a promising one that improves overall robustness in detection of visually similar
images. Developers can also utilise our Python unihasher library to integrate or extend our novel
decision tree approach into their content moderation processes to detect visually similar variants
of problematic images with the assurance of improved robustness from our empirical tests.

5.1 Future Work
With extensive literature on various perceptual hash algorithms available, each with their own
strengths towards certain content-preserving modifications, an area of future work may involve
extending our highly flexible approach of decision trees to include more combinations of
different hash algorithms as available in the literature, with [6] providing a comprehensive
comparison of many existing hash algorithms. Furthermore, we believe that the approaches
proposed in our paper can be extended to improving the overall robustness of perceptual hash
algorithms aiming to evaluate similarity of video content, such as Facebook’s TMK algorithm
[7].

6. Acknowledgements
We would like to thank our mentor Ruth Ng Ii-Yung for introducing us to cryptography concepts
and the technical workings of end to end encryption, and supporting us throughout our research
journey. We would also like to thank our mentor Chan Ming Kai Alvin for assisting us in our
implementations, and providing us with valuable guidance.

https://pypi.org/project/unihasher/


References
[1] S. Sharma, "Analysis of Perceptive Hashing Algorithm in Image Manipulation Detection,"
2023 International Conference on Computational Intelligence, Networks and Security (ICCINS),
Mylavaram, India, 2023, pp. 1-5, doi: 10.1109/ICCINS58907.2023.10450033.
[2] Sean McKeown, William J. Buchanan, Hamming distributions of popular perceptual hashing
techniques, Forensic Science International: Digital Investigation, Volume 44, Supplement, 2023,
301509, ISSN 2666-2817, https://doi.org/10.1016/j.fsidi.2023.301509
[3] Hamadouche, Maamar & Zebbiche, K. & Guerroumi, Mohamed & Hanane, Tebbi &
ZAFOUNE, Youcef. (2021). A comparative study of perceptual hashing algorithms: Application
on fingerprint images.
[4] Buchner, J.. Image hash Python library. Available at:
https://github.com/JohannesBuchner/imagehash?tab=BSD-2-Clause-1-ov-file#readme
[5] Z. Tang, X. Zhang and S. Zhang, "Robust Perceptual Image Hashing Based on Ring Partition
and NMF," in IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 3, pp.
711-724, March 2014, doi: 10.1109/TKDE.2013.45.
[6] M. Roy, D. M. Thounaojam and S. Pal, "Various Approaches to perceptual image hashing
systems-A Survey*," 2023 International Conference on Intelligent Systems, Advanced
Computing and Communication (ISACC), Silchar, India, 2023, pp. 1-9, doi:
10.1109/ISACC56298.2023.10083762.
[7] Facebook TMK hash library. Available at:
https://github.com/facebook/ThreatExchange/tree/main/tmk
[8] PG images for the Magazines dataset sourced from Vogue Archive https://archive.vogue.com/
[9] R21 images for the Magazines dataset sourced from Playboy Internet Archive
https://archive.org/details/@playboy_archive
[10] PG images for the People dataset sourced from People Image Dataset on Kaggle
https://www.kaggle.com/datasets/ahmadahmadzada/images2000
[11] R21 images for the People dataset sourced from nsfw_data_source_urls
https://github.com/EBazarov/nsfw_data_source_urls

Appendix
Appendix 1: Details on hash algorithms
Difference hash (dHash)

https://doi.org/10.1016/j.fsidi.2023.301509
https://github.com/JohannesBuchner/imagehash?tab=BSD-2-Clause-1-ov-file#readme
https://github.com/facebook/ThreatExchange/tree/main/tmk
https://archive.vogue.com/
https://archive.org/details/@playboy_archive
https://www.kaggle.com/datasets/ahmadahmadzada/images2000
https://github.com/EBazarov/nsfw_data_source_urls


For a more comprehensive overview, refer to the HackerFactor article available at
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html

Perceptual hash (pHash)

For a more comprehensive overview, refer to the HackerFactor article available at
https://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html

Wavelet hash (wHash)

https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html


For a more comprehensive overview, refer to the Medium article available at
https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5

Non-negative Matrix Factorisation Hash (NMFHash)

For a more comprehensive overview, refer to the NMF paper available at [5]

Appendix 2: Image modifications applied to each image in the dataset
Modification Type Definition

https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5


Brightness Dark Decrease/increase brightness

Bright

Black and white Change image to greyscale

Contrast Low Decrease/increase image contrast

High

Crop (5%) Remove 5% of the image from the top,
left, right, and bottom of the image, in
effect reducing the overall pixel count to
81% of the original (0.9 height x 0.9
width).

Gaussian Blur Blur image

Mirror X-axis Flip the image on its x/y-axis, preserving
viewability, but generating significant
pixel/binary level changes.Y-axis

Noise Colour Add random bright and dark pixels

Gaussian Pixel values are changed by a normal
distribution of variations

Speckle Create grainy variations in pixel intensity

Resize 32 x 32 Resize the image to the specified size

64 x 64

128 x 128

256 x 256

Rotate Rotate the image by 45 degrees, leaving
the background as black space

Saturation Desaturated Decrease/increase image saturation

Saturated

Appendix 3: Dataset construction
PG images for the Magazines dataset were downloaded from [8] manually, while R21 images
were downloaded from [9] manually. The full dataset that we used can be found at
https://drive.google.com/file/d/1sMX46jmYc285Z07sSkJa36R7VuuhwxoH/view?usp=drive_lin
k.

https://drive.google.com/file/d/1sMX46jmYc285Z07sSkJa36R7VuuhwxoH/view?usp=drive_link
https://drive.google.com/file/d/1sMX46jmYc285Z07sSkJa36R7VuuhwxoH/view?usp=drive_link


PG images for the People dataset were downloaded from [10] and cleaned manually. It can be
found at
https://drive.google.com/file/d/18anMXPvSePLmQaW2aZPT8EqLDwNaUqZl/view?usp=drive_
link. The R21 images were sourced from [11] via GET requests and cleaned. The GET request
script used to construct the People dataset can be found at
https://drive.google.com/file/d/1aSOlcbx-Vyx2rx9v7FupLkp5FU8CyUfu/view?usp=drive_link.

Appendix 4: Content moderation evaluation metric formulae

Formula

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Appendix 5: Time and memory comparisons for hashes

Algorithm Number of Images
Time Taken
(seconds) Memory Used (bytes)

dHash

30 0.2536 7,221,248

50 0.4411 5,775,360

50 0.494 5,619,712

50 0.4006 5,574,656

60 0.4999 7,467,008

NMFHash

30 39.0331 6,918,144

50 71.8844 7,761,920

50 71.6007 6,946,816

50 72.681 7,831,552

60 91.5425 7,270,400

pHash

30 0.318 5,148,672

50 0.4534 4,444,160

50 0.4434 4,104,192

50 0.4671 3,842,048

60 0.4714 4,272,128

sha256

30 0.2621 5,296,128

50 0.437 4,063,232

https://drive.google.com/file/d/18anMXPvSePLmQaW2aZPT8EqLDwNaUqZl/view?usp=drive_link
https://drive.google.com/file/d/18anMXPvSePLmQaW2aZPT8EqLDwNaUqZl/view?usp=drive_link
https://drive.google.com/file/d/1aSOlcbx-Vyx2rx9v7FupLkp5FU8CyUfu/view?usp=drive_link


50 0.6055 3,780,608

50 0.469 3,194,880

60 0.5061 5,201,920

wHash

30 0.5607 1,794,048

50 0.9065 1,695,744

50 0.9001 2,473,984

50 0.9755 2,674,688

60 1.1385 2,699,264



Appendix 6: Graphs on performance of perceptual hash algorithms in detecting various
content-preserving modified image variants (Magazines dataset)
Please access the following link to view the graphs:
https://drive.google.com/drive/folders/10F0roXVi_TI6MdbGczX_MEtcuKpcGwBY?usp=drive_
link

Appendix 7: Results from testing on People Dataset

Individual Hashes
Hash Algorithm Threshold Condition Accuracy Precision Recall F1-Score

dHash ≤ 0.334 86.70 90.71 80.09 85.07

pHash ≤ 0.340 87.83 94.35 79.01 86.00

wHash ≤ 0.191 84.70 84.94 82.24 83.57

NMFHash > 0.952 74.53 90.96 51.26 65.57
Table 5. Thresholds for People dataset and comparison of hash algorithms using performance evaluation metrics. All values are
in percentages (%).

Majority Decision
Accuracy Precision Recall F1-Score

87.86 93.43 79.96 86.17
Table 6. Analysis of Majority Decision Approach performance using evaluation metrics. All values are in percentages (%).

https://drive.google.com/drive/folders/10F0roXVi_TI6MdbGczX_MEtcuKpcGwBY?usp=drive_link
https://drive.google.com/drive/folders/10F0roXVi_TI6MdbGczX_MEtcuKpcGwBY?usp=drive_link

